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Abstract 
 

ONCOLYTIC VESICULAR STOMATITIS VIRUS INHIBITS CANCER CELL 
INVASION PROCESSES 

 
Dakota W. Goad 

B.S. Appalachian State University 
 
 
 

Chairperson:  Dr. Maryam Ahmed 
 
 

 Vesicular stomatitis virus (VSV) is currently being investigated as a candidate oncolytic 

agent due to its capacity to kill cancer cells while exhibiting low virulence in vivo. My 

project investigates the impact of VSV on cancer cell invasion mechanisms. A main 

trigger for cancer metastasis is the formation of actin-rich structures known as 

invadopodia, which function in extracellular matrix degradation. Studies have shown 

that VSV can manipulate the cytoskeletal structure of cancer cells to potentiate viral 

replication. I hypothesized that VSV would alter invadopodia structures and inhibit their 

proteolytic function due to the global ability of VSV to inhibit host gene expression in 

infected cells. My results showed that, following infection with VSV, Src-transformed 

fibroblast cells formed lowered numbers of invadopodia structures, but yielded increased 

numbers of ring shaped invadopodia superstructures called rosettes. Overall, there was a 

decreased ability of these cells to degrade the extracellular matrix and express the 

invadopodia marker protein, Tks5, both of which correlated with the suppression of 

invadopodia formation.  These results suggest that the alteration in invadopodia 
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formation by VSV is associated with the ability of the virus to decrease proteolytic 

degradation of the extracellular matrix. Interestingly, we found a noticeable increase in 

cortactin expression which may be related to the increased formation of rosette 

structures at later times post-infection. Our results suggest that manipulation of the 

cytoskeletal elements by VSV may be a mechanism by which the virus potentiates the 

infection process but may lead to the downstream effect of altering proteolytic activity of 

cancer cells to inhibit the invasion process. 
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Foreword 
 
 

Chapter 2 of this thesis will be submitted to the Virus Research journal, an 

international peer-reviewed journal owned by Elsevier B.V.; it has been formatted 

according to the style guide for that journal.  
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Chapter 1 
 

Tumor Development  

The formation of tumors, or tumorigenesis, is a process involving multiple steps and 

is dependent on an accumulation of mutations within cells of a specific tissue. Often 

tumor cells exhibit many mutations; however, only a small subset are responsible for 

neoplastic development (Knudson, 2001).  Such mutations give rise to altered 

homeostasis as the transformed cells gain fitness via sustained proliferation while 

decreasing the rate of apoptosis and generating a pro-growth environment. 

Tumors arise often, especially in older vertebrates, but most pose little threat to the 

host because they are localized or are of small size. Such tumors are considered benign. 

It is typically apparent when a tumor is benign because it contains cells that resemble 

and may function like normal cells. The surface interaction molecules that hold tissues 

together keep benign tumor cells, like normal cells, localized to their respective tissues 

(Lodish et al., 2000). In contrast, the cells composing a malignant tumor express some 

proteins characteristic of the cell type from which it arose, and a high percent of the cells 

grow and divide more rapidly than normal. Some malignant tumors remain localized, at 

least for a time. Most, however, do not remain in their original site but instead invade 

surrounding tissues, get into the body’s vascular system, and set up areas of proliferation 

away from the site of their original appearance, a process called metastasis. Metastasis 

and the subsequent growth of tumors in other organs is the most life-threatening aspect 

of cancer as a disease.  Cells must undergo many alterations, both genotypically and 

phenotypically, in order to acquire the ability to metastasize (Lodish et al., 2002). 
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It has long been recognized that the wound healing process and tumorigenesis are 

closely related.  The mechanisms that regulate wound healing have been shown to 

promote transformation and growth of malignant cells (Dvorak, 1986). Inflammatory 

processes that occur during normal wound healing have been linked to the pathological 

state of many tumors. Normal epithelial tissue exists in a state of homeostasis where 

tissue regeneration is closely regulated by epithelial stem cells located within highly 

specialized niches. During tissue injury, replenishment of epithelial cell loss is warranted 

by the proliferation of these stem cells and their progeny in response to proinflammatory 

cytokines (Eming et al., 2007). Additionally, numerous potent growth factors are 

released by macrophages and lymphocytes during wound healing that promote stem cell 

proliferation and plasticity. Among these are morphogens that are commonly associated 

with embryonic development (Blanpain and Fuchs, 2014). Tissue injury induces 

immediate recruitment of neutrophils, which are later replaced by macrophages and 

lymphocytes. Infiltrating leukocytes play a major role in secretion of inflammatory 

cytokines, growth factors, and chemokines, which stimulate proliferation of progenitor 

cells and recruitment of keratinocytes and endothelial cells during the proliferative phase 

of wound healing (Eming et al., 2007). At this stage, granulation tissue forms, 

angiogenesis is induced, and new extracellular matrix (ECM) is secreted. Epithelial cells 

undergo epithelial–mesenchymal transition (EMT) and migrate to the edges of the 

wound to impart re-epithelialization of the damaged tissue. During development/wound 

healing, some cells can switch from an epithelial state to a mesenchymal state. This 

EMT program is tightly orchestrated by a number of cellular and molecular events. 

During tumorigenesis, the EMT may increase the motility and invasiveness of cancer 
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cells, and malignant transformation may actually be associated with signaling pathways 

that induce EMT (Boyer et al., 2000). Various processes associated with the EMT during 

tumor progression closely resemble those that occur during normal development/wound 

healing. It appears however that the molecular programs which lead to EMT during 

tumor progression are only a small percent of factors that induce full-fledged EMT in in 

development/wound healing (Bellacosa et al., 2005). Invasion into surrounding tissues 

by cancer cells and metastasis to distant organs have been found to be critically 

dependent on the acquisition of EMT features in the initial cancer cells. (Kang and 

Massagué, 2004). 

The first crucial step in the process of invasion is the movement of cancer cells into 

tissue surrounding the tumor and the vasculature. The best understood cancer cell 

motility mechanism is mesenchymal cell motility. It is estimated that between 10% and 

40% of carcinomas undergo an EMT and use this form of motility (Thiery et al., 2009). 

The EMT in cancer cells is associated with continuous changes in gene expression 

driven by the activation of important transcription factors like Twist1 and the Snail/Slug 

transcriptional repressors (Oft et al., 2002). This process results in a phenotype 

characterized by an elongated cell morphology with established cell-polarity and is 

dependent upon proteolysis to degrade the ECM. Activation of RTKs such as PDGFRα 

and c-Met is often the initiating event for mesenchymal motility (Zhang and Vande 

Woude, 2003). Subsequently, phosphatidylinositol 3, 4, 5-triphosphate (PtdIns (3, 4, 5) 

P3) is generated at the leading edge of the cell and activates the GTPase Rac, and 

recruits the Scar/WAVE family proteins and the Arp2/3 complex (Ridley et al., 2003). 

The Arp2/3 complex then can nucleate the formation of new filamentous actin filaments. 
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Oncogenic Ras proteins can also initiate these series of events by activating PtdIns-3 

kinase, leading to elevated levels of PtdIns (3, 4, 5) P3. Additionally, the tumor 

suppressor PTEN can stimulate PtdIns (3, 4, 5) P3. Levels of Cdc42 and the recruitment 

of adaptor proteins can also promote actin polymerization (Pollard and Borisy, 2003) 

Together, these events lead to the formation of an actin-rich protrusions called 

invadopods. 

Invadopodia Formation and Regulation 

One of the most important steps in cancer cell invasion is the development of 

proteolytic invadopodia structures. Invadopodia are important actin-rich protrusions of 

the plasma membrane from the ventral surface of the cell that are associated with 

degradation of the ECM during cancer invasion. After the extension of the invadopod 

protrusions, small integrin-dependent focal contacts are formed which attach the new 

protrusions to the ECM. Some focal contacts then develop into large focal adhesions that 

enable actomyosin contractile force to be transmitted to the ECM (Ridley et al., 2003). 

The directionality of cell movement is maintained by Cdc42, which coordinates actin 

polymerization at the front of the cell with microtubule attachment and alignment 

(Ridley et al., 2003). These mesenchymal cells are then able to move through the ECM 

space by using proteases, such as MMPs and urokinase-type plasminogen activators that 

degrade ECM proteins. The formation of these invadopodia structures is driven by actin 

polymerization at the leading edge. Malignant tumor cells often show excessive cell 

protrusive activity due to irregular activation of signaling pathways that regulate actin 

cytoskeletal rearrangement (Wang et al., 2004). 
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Being an actin-based structure, invadopodia involve a large number of structural and 

regulatory proteins that control actin dynamics, such as Arp2/3, Ena/Vasp, and various 

small GTPases. Cortactin, MENA, and Tks5 also play crucial roles at invadopodia and 

have been implicated in tumor progression. Cortactin and MENA are both vital players 

in actin polymerization dynamics, so consequently their roles in tumor invasion and 

metastasis go beyond invadopodia to general cell migration and other actin-based 

cellular processes. In contrast, Tks5 is known to be more specifically involved in 

invadopodia formation, so its impact on tumor invasion and metastasis is thought to be 

largely due to its function at invadopodia (Paz et al., 2014).  Given their fundamental 

function to recruit proteases to cell-matrix contacts for matrix remodeling, invadopodia 

are known to contain a large numbers of proteases. The proteases found at invadopodia 

include metalloproteases (both secreted and membrane-tethered MMPs), the ADAM (a 

disintegrin and metalloproteinase) family members, and membrane-bound serine 

proteases, all of which have been implicated in cancer progression and metastasis (Paz et 

al., 2014). The scaffolding protein Tks5 has been of particular interest during the course 

of this project. Tks5 has been shown to localize to and be required for the formation of 

invadopodia (Seals et al., 2005). Many binding partners of Tks5 have been discovered 

that link Tks5 to actin remodeling proteins and pericellular proteases such as ADAMs 

family metalloproteases and adaptor proteins Grb2 and Nck2 (Abram and Courtneige, 

2003). It has been found that by siRNA knockdown of Tks5 significantly impaired the 

invasiveness and tumorigenicity of cancer cells (Blouw et al., 2008; Seals et al., 2005). 

Studies so far suggest that invadopodia-mediated cell invasion may be critical for not 

just progression of the metastatic cascade, but the growth of the tumor as well.  
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 The EMT program, including the formation of invadopodia, has been shown to be  

orchestrated by a group of transcription factors, all of which have been implicated in 

tumor invasion and metastasis (Thiery et al., 2009). The transcription factor Twist1 has 

been shown to play critical roles in tumor metastasis in multiple tumor models (Yang et 

al., 2004).Twist1 was previously known to be involved in mesoderm differentiation and 

neural crest migration (Leptin and Grunewald, 1990) but has also been identified in a 

microarray-based screen for genes implicated in metastasis (Kang and Massagué, 2004). 

Twist1 was shown to be required for ECM invasion by inducing the formation of 

invadopodia. Twist1 was also found to directly induce expression PDGFRα, which then 

activate other kinases to promote invadopodia formation (Eckert et al., 2011). PDGFRs 

are cell surface tyrosine kinase receptors (RTKs) for members of the platelet-derived 

growth factor family. PDGFRs are important factors regulating cell proliferation, 

cellular differentiation, cell growth, development, and highly implemented in 

tumorigenesis and metastasis (Williams et al., 1988). Due to the induction of PDGFR by 

Twist1, Twist1 has been uncovered as a crucial upstream regulator in the formation of 

invadopodia. Further evidence shows that by knocking down key factors induced by 

Twist1 is associated with a block in invadopodia formation. Twist1 therefore represents 

a direct link between invadopodia and metastasis.  

As mentioned briefly earlier, PDGFRs may activate a family of kinases which then 

leads to the formation of invadopodia structures. The Src family of protein tyrosine 

kinases (SFKs)  are a  family of kinases that play key roles in regulating signal 

transduction downstream of diverse set of cell surface receptors. Members of the Src 

family show a conserved domain organization, which includes a myristoylated N-
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terminal segment, followed by SH3, SH2, linker and tyrosine kinase domains, and a 

short C-terminal tail (Bromann et al., 2004). The ability of oncogenic forms of SFKs to 

induce cell transformation is due to their role in regulating cell growth. SFKs promote 

signaling from growth factor receptors in multiple ways, including the direct 

participation in pathways required for DNA synthesis as well as controlling the turnover 

of cell surface receptors, modifying actin cytoskeleton rearrangements and promoting 

cell motility and survival (Bromann et al., 2004).  The basic function of Src is the 

transmission of external signals to the cell interior, which is accomplished by 

phosphorylating tyrosine residues on substrates downstream of RTKs and integrins. 

Notably, there is evidence that Src orchestrates tumor invasion and progression by acting 

on these two fundamental pathways (Abram and Courtneige, 2000).  One of the most 

apparent phenotypes of Src-transformed cells is the formation of invadopodia. These 

structures are made by metastatic cancer cells and Src-transformed fibroblasts (Linder et 

al., 2009). It has been shown that Src activity is necessary for invadopodia formation and 

function, and the level of tyrosine phosphorylation at invadopodia positively correlates 

with the degree of ECM degradation (Bowden et al., 2006). The molecular components 

that make up invadopodia include proteins that facilitate actin assembly, membrane 

trafficking, and focal degradation. Src substrates participate in all of these functions and 

include the proteins cortactin (Bowden et al., 1999) N-WASp (Yamaguchi et al., 2005) 

Dynamin-2 (Baldassarre et al., 2003) and Tks5 (Seals et al., 2005) among others. Studies 

have evaluated Src activity in invadopodia formation through the ectopic expression of 

constitutively active Src (Stylli et al., 2009). However, these activating Src mutants are 

rarely found in human tumors, which instead typically contain increased levels of wild-
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type (WT) Src expression and/or aberrant WT Src activity due to hyperactivation of 

upstream pathways (Yeatman, 2004). The exact role of WT Src in invadopodia 

formation and function is relatively unknown. However, we do know now that during 

EMT, Twist1 is an upstream activator of Src though the activity of PDGFRs. 

 Another potent inducer of EMT is transforming growth factor beta (TGFβ). 

Activation of TGFβ leads to the activation of different downstream substrates and 

regulatory proteins, inducing transcription of different target genes that function in 

differentiation, chemotaxis, proliferation, and activation of many immune cells   

(Massagué, 2012; Thiery et al., 2009). TGFβ promotes EMT by activating extensive 

intracellular signaling that involves Smad proteins, ERK, and Jagged/Notch signaling, 

which are important factors for growth and development. Of particular interest in the 

context of invadopodia, Eckert and colleagues showed that silencing Twist1 blocked the 

ability of TGFβ to induce PDGFRα as well as invadopodia formation (Eckert et al., 

2011). In addition, Pignatelli et al. (2012) demonstrated that Hic-5 (a focal adhesion 

adaptor protein induced by TGFβ) localized to invadopodia in TGFβ-treated human 

epithelial breast cancer cells. They showed that Hic-5 was phosphorylated upon TGFβ 

stimulation and that this phosphorylation was required for TGFβ-induced invadopodia 

formation and invasion, thereby further emphasizing the role of EMT-inducing genes in 

invadopodia regulation.  

Role of Immune Cells in Invasion 

In addition to transcription factors, immune cells infiltrating the tumor 

microenvironment play key roles in the invasion process. In the final phase of wound 
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healing, wound contraction and differentiation of fibroblasts to myofibroblasts result in 

the formation of fibrous (scar) tissue (Singer and Clark, 1999). Likewise, chronic 

inflammation has been linked to tumorigenesis, tumor progression, and metastasis in 

many different cancers. The tumor microenvironment and chronic wounds share many 

features. Infiltrating leukocytes present within the tumor and associated stroma stimulate 

tumor growth, invasion, and angiogenesis. Tumor-associated macrophages (TAM), 

tumor-associated dendritic cells (TADC), and tumor infiltrating lymphocytes are a 

source of proinflammatory mediators in the tumor microenvironment. Environmental 

stimuli such as hypoxia and DNA damaging agents stimulate secretion of chemokines 

from tumor cells that recruit pro-tumor inflammatory cells and help to shape the pro-

tumor immune response (Qian and Pollard, 2010). The relationship between the wound 

healing process and tumorigenesis is complex with many factors and stages. Actually, it 

is now known that TAMs promote cancer progression and metastasis (Pollard, 2004) and 

a paracrine interaction between tumor cells and macrophages has been identified in vivo 

that is required for invasion and intravasation (Wyckoff et al., 2004). Clinical studies 

have shown that the presence of TAMs in primary tumors correlates with poor prognosis 

in several human cancers (Goede et al., 1999; Leek et al., 1996). TAMs secrete a variety 

of growth factors, chemokines, and matrix-modifying enzymes that facilitate carcinoma 

cell migration and invasion, angiogenesis, and matrix remodeling. Macrophages are 

known to form podosomes that are similar to invadopodia in molecular composition 

(Linder, 2009). Because podosomes are usually observed at the leading lamella in 

migrating macrophages, they are thought to function as adhesion structures in cell 

motility and chemotaxis (Evans et al., 2003).  When cultured on fluorescently labeled 
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gelatin coverslips, primary macrophages derived from mouse bone marrow form 

podosomes that organize into large ring shaped clusters called rosettes. These structures 

also degrade the underlying gelatin matrix. As macrophages release MMPs, they have 

been thought to act as producers of proteinases that infiltrate into and degrade the ECM. 

In addition to producing MMPs, macrophages have been shown to directly degrade 

ECM through podosomes. This matrix degradation seems to be a conserved function of 

podosomes as it has been observed in various other cell types including smooth muscle 

cells, endothelial cells, and transformed fibroblasts (Burgstaller and Gimona, 2005). The 

podosome mediated migration and breakdown of ECM by TAMs, subsequently releases 

sequestered growth factors that help feed a positive feedback loop during cancer 

progression. Indeed, the ability of cells to form podosomes/invadopodia structures is 

critical for the metastatic process, thus revealing a sexy target for therapeutic strategies 

against metastatic cancers.   

Do all invasive cancer cells need invadopodia structures to invade surrounding 

tissues?  Numerous studies have  shown that areas of matrix degradation spatially 

correlate with invadopodia structures. This could be due to the proteolytic nature of 

invadopodia structures. Invadopodia have been shown to exhibit an association of 

integrins along with membrane type-1 matrix metalloproteinase (MT1-MMP) and not 

just active enzymes like MMP-2 and MMP-9 alone. It has been shown that reducing the 

proteolytic activity in invadopodia with the MMP-9 and MMP-2 inhibitor batimastat 

(BB-94) decreases invasion significantly. This suggests that cancer cell invasion is 

dependent upon proteolytically active invadopodia (Kelly et al., 1998). The necessity of 

invadopodia during the course of invasion creates a need for more targeted therapeutic 
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strategies that can either inhibit their formation, or render them incapable of proteolytic 

degradation.  

Cancer Therapies 

Many therapeutic options for cancer exist. The primary therapies include surgery, 

radiation therapy, hormonal therapy, chemotherapy, targeted therapy and palliative care. 

What treatments are used can depend on the location, type, and grade of the cancer, 

including the overall health of the patient. The treatment goal may or may not be 

curative. Complete removal of the cancerous tissue without damaging other parts of the 

body is the ideal outcome of treatment that can sometimes be accomplished by surgery, 

but the tendency of cancers to invade adjacent tissues or to spread to distant sites by 

microscopic metastases often limits its effectiveness, while chemotherapy and 

radiotherapy can have adverse effects on normal, non-cancerous cells. Therefore, 

treatment with non-negligible adverse effects may be accepted in some cases; and 

besides curative intent, practical aims of therapy can also include suppressing the cancer 

to a subclinical state and maintaining that state for a decent quality of life and palliative 

care without curative intent for advanced-stage metastatic cancers (Uppuluri et al., 

2015).  

   Cancer is not actually a single disease, but a class of diseases; therefore, it is unlikely 

that there will ever be a single cure for cancer any more than there will be a single 

treatment for all infectious diseases. The treatment options depend on the type of cancer, 

stage of the disease, whether or not the cancer has spread, and treatments administered in 

the past and the patient’s general health. Stages II-IV cancers are differentiated on the 
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degree to which the tumor has spread. Stages II and III indicate larger cancers or tumors 

that have grown deeper into nearby tissue. They may have also spread to lymph nodes 

but not to other parts of the body. Stage IV cancer is used to classify cancer that has 

metastasized to other organs of the body (Donohoe et al., 2017). Once cancer spreads, it 

can be extremely difficult to control. Although some types of metastatic cancer can 

sometimes be cured with current treatments, most cannot. The goal of these treatments 

however is to stop or slow the growth of the cancer and to relieve symptoms caused by 

it, to both prolong and increase the quality of the patients’ life. Many late stage cancer 

patients have endured unforgiving chemotherapy treatment regimens with only minimal 

benefits, or worse, to discover the cancer was completely unresponsive. When accepting 

common treatments, most patients are not aware that chemotherapy is effective in only 

2% of late stage cancers after a five-year period. Despite the National Cancer Institute's 

forty years of scientific research, stage III and IV chemotherapy-driven cancer 

treatments have not progressed. In fact, the treatments typically do not work. Therefore, 

it is critical that more effective, targeted treatment options are developed (Faguet, 2005).  

Oncolytic Viruses 

  Recently, oncolytic viruses (OVs) have been studied as potential cancer therapeutics, 

a field known as oncolytic virotherapy. Oncolytic virotherapy is centered on the 

preferential replication of viruses in cancer cells and their subsequent spread within a 

tumor without causing damage to normal, non-cancerous tissue (Russell et al., 2012). 

This results in multiple self-perpetuating rounds of infection, replication, lysis and 

spread throughout the tumor, sparing host non-tumor cells. In addition, virus replication 

within a tumor may help stimulate the immune system by prompting the release of 
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cytokines and by liberating tumor antigens (Ries et al., 2000). Genetic manipulation has 

enabled for the rapid expansion of OVs in the recent past, giving rise to a broader range 

of potentially pathogenic viruses to be engineered for targeting and safety (Cattaneo et 

al., 2008).  Some of hallmarks of cancer (Hanahan and Weinberg, 2011) provide a 

permissive environment for OV replication; including sustained proliferation, avoidance 

of apoptosis, evasion of growth suppressors, genomic instability and evasion of the 

immune system. This may be possible because in many cases, proliferative and antiviral 

signaling pathways are mutually antagonistic. Hence, development of enhanced 

proliferative signaling in tumor cells may lead to suppression of antiviral pathways. For 

example, it is now known that most tumor cells are resistant to the antiproliferative 

effects of interferons (IFNs) (Einhorn and Strander, 1993) and actually, several different 

defects in the IFN signal transduction pathway have been identified in different types of 

tumors (Wong et al., 1997).The resistance of tumor cells to the antiproliferative effects 

of IFNs may make cancer cells compatibly more permissive to infection with a variety 

of viruses, including vesicular stomatitis virus (VSV). Many studies have demonstrated 

the ability of OVs to preferentially destroy cancer cells in vitro and in vivo, however; the 

effects of OVs on the invasive mechanisms of cancer cells, including invadopodia 

formation and protease activity, remain unclear. 

 VSV is a rhabdovirus that primarily infects cattle, horses and swine in the wild, but 

can also infect humans amongst other species (Mead et al., 2000). The two main 

serotypes found in the Americas are New Jersey (VSV-NJ) and Indiana (VSV-Ind), 

whereby the New Jersey serotype causes most clinical diseases. Cases of human 

infection from VSV are rare, however, if infected; it is usually asymptomatic with 
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occasional reports of mild-like flu symptoms (Roberts et al., 1999). VSV is a negative 

sense RNA virus which replicates entirely in the host cell’s cytoplasm. The small 11kb 

genome of VSV consists of a single strand of RNA, which is completely coated by the 

viral nucleoprotein. In the course of infection, VSV synthesizes five sub-genomic 

mRNAs that encode its five different proteins (Fields, 1996). 

  The nucleoprotein, phosphoprotein, large polymerase protein along with other 

specific host cell proteins are responsible for both viral transcription and replication. In 

addition, viral binding to target cells is mediated by the viral glycoprotein, and the 

matrix protein (229 amino acids) has a crucial role in the viral assembly and budding, 

and plays a critical role in early phase infection, aiding the virus to avoid host antiviral 

responses (Black and Lyles, 1992). This is accomplished by two mechanisms: 

interruption of host cell transcription and the blocking of mRNA export from the 

nucleus. In both cases, the role of the matrix protein is to inhibit the expression of the 

host cell’s antiviral gene products, enabling the virus to replicate unhindered (Black and 

Lyles, 1992). In healthy humans, VSV may at first enter and infect host cells, but 

initiation of the innate and adaptive immune responses will suppress viral replication and 

clear out infected cells. So while the sensitivity of malignant cells to VSV may be due to 

a higher propensity to apoptose, it is most likely their inherent defects in innate immune 

signaling pathways (due to the general genomic instability of malignant cells and the 

high levels of proliferative signaling pathways) that allow for unchecked viral replication 

and infection (Parato et al., 2005). Cancer cells are known to generally have defective 

immune signaling (Rabinovich et al., 2007), which is important for proliferation and 

escape from host immunosurveillance. In addition, it has been shown that the defective 
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immune regulatory system, including dysregulation of interferon activation, is an 

important factor in regulating replication of VSV in cancer cells (Stojdl et al., 2000). 

Also, cancer cells can proliferate continuously due to deregulated translation which 

subsequently allows for high levels of viral protein products and replication within the 

cells, leading to cell death (Balachandran and Barber, 2004). The ability of VSV to 

preferentially replicate in and subsequently kill malignant cells has been well established 

in cultured cells as well as mouse xenografts of human cancer cells (Balachandran et al., 

2001; Diaz et al., 2007; Ebert et al., 2003; Ebert et al., 2005). Additional studies into the 

biology of VSV, its oncolytic activity, and its regulation in malignant cells as well as 

additional testing in animal models for efficacy and safety, may bring VSV oncolytic 

therapy closer for treatment of cancer patients. For the experiments presented within this 

project, recombinant virus obtained from an infectious cDNA clone containing a wild-

type (wt) M protein (rwt virus) was compared to an isogenic recombinant having a 

single point mutation that substitutes an arginine for methionine at position 51 of the 229 

amino acid M protein (rM51R-M virus). That point mutation renders the virus defective 

in its ability to inhibit host gene expression, but does not compromise the expression of 

viral genes or the production of infectious progeny (Ahmed et al., 2003; Kopecky et al., 

2001). One of many potential concerns when administering oncolytic viruses as 

treatments is the associated toxicity, which could be lethal in immune comprised 

individuals. The rM51R mutant virus is an exciting oncolytic option because not only is 

the virus avirulent and safer than its intact M protein counterpart (VSV rwt), but also has 

the ability to induce a tumor specific immune response due to its inability to shut down 

host gene expression (Ahmed et al., 2003). 
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  In the context of this project, we sought to determine the effects of both rwt and 

rM51R-M VSV infection on the invasive mechanisms of Src transformed NIH 3T3 

murine fibroblasts. This included assessing overall cell viability post infection with 

VSV, testing the ability of VSV to alter the morphological characteristics of invadopodia 

structures including subsequent ECM degradation, and a screen for expression of many 

critical proteins necessary for invadopodia assembly and maturation.   
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Chapter 2 

1. Introduction 

Oncolytic viruses (OVs) are being widely exploited as alternative treatment options 

for many types of cancers due to their natural and/or engineered ability to preferentially 

target and lyse cancer cells while sparing normal healthy cells. (Atherton and Lichty, 

2013; Barlett et al., 2013) Some hallmarks of cancer as described by Hanahan and 

Weinberg (2011) provide a permissive environment for OV replication; including 

sustained proliferation, avoidance of apoptosis, evasion of growth suppressors, genomic 

instability, and evasion of the immune system. This may be possible because in many 

cases, proliferative and antiviral signaling pathways are mutually antagonistic. Hence, 

development of enhanced proliferative signaling in tumor cells may lead to suppression 

of antiviral pathways. For example, it is now known that most tumor cells are resistant to 

the antiproliferative effects of type I interferons (IFNs) (Einhorn and Strander, 1993; 

Wong et al., 1997). The resistance of tumor cells to the antiproliferative effects of IFNs 

may make cancer cells more permissive to infection with a variety of viruses, including 

vesicular stomatitis virus (VSV).  

VSV is a natural oncolytic agent that selectively replicates in cells with type I IFN 

antiviral defects, while normal tissues with intact antiviral responses are resistant to 

infection and killing by VSV (Hastie and Grdzelishvili, 2012). It has been shown that 

VSV can directly destroy various types of cancer cells in vitro and in vivo (Hastie and 

Grdzelishvili, 2012). For the experiments presented within this project, recombinant 

virus obtained from an infectious cDNA clone containing a wild-type (wt) matrix (M) 
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protein (rwt virus) was compared to an isogenic recombinant having a single point 

mutation that substitutes an arginine for methionine at position 51 of the 229 amino acid 

M protein (rM51R-M virus). This point mutation renders the virus defective in its ability 

to inhibit host gene expression, but does not compromise the expression of viral genes or 

the production of infectious progeny (Ahmed et al., 2003; Kopecky et al., 2001). Viruses 

show high potential as oncolytic agents due to their effectiveness at killing various 

cancer types in the absence of disease, thus making them effective, yet safer treatment 

options.  

Cancer causes approximately 730,000 deaths annually and nearly 90% of them are 

associated with metastasis (Mehlen and Puisieux, 2006). Metastasis results from various 

molecular cascades through which cancer cells disseminate from the primary tumor and 

travel to distant sites of the body where they can recolonize and form a secondary tumor. 

A cascade of adhesive interactions, invasive processes, and response to chemotactic 

stimuli characterizes the metastatic process.  For many of these processes to occur, cells 

must acquire the ability to breach the basement membrane (BM) and move through 

tissues. The BM breach occurs through localized remodeling of the extracellular matrix 

(ECM), which is mediated through the formation of structures called invadopodia, or 

“invasive feet”. Invadopodia are actin-rich membrane protrusions formed by invasive 

cancer cells, which facilitate focal degradation of the BM and ECM by the localized 

proteolytic activity of matrix metalloproteinases (MMPs). The ability of cancer cells to 

form invadopodia is often related to their invasive and metastatic potentials and there is 

strong evidence indicating that invadopodia are key cellular structures that regulate 
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metastasis of many cancers (Blouw et al., 2008). Because invadopodia structures are 

necessary for cancer cell metastasis, they represent attractive targets for cancer therapies. 

In this study, we sought to investigate whether oncolytic VSV could alter 

invadopodia structures in cancer cells in order to attenuate the process of metastasis. 

Previous studies have shown that VSV utilizes cellular factors, which are known 

components of the invadopodia assembly and maturation pathways during the course of 

viral entry, transport of viral proteins within the cytoplasm, and viral budding.  

Therefore, we hypothesized that the formation of invadopodia would be modulated by 

both rwt and rM51R-M viruses. However, the mechanisms by which these viruses alter 

invadopodia structures may differ due to differences in the ability of these viruses to shut 

down host gene expression in infected cells. To carry out our studies, we utilize highly 

aggressive Src transformed NIH 3T3 murine fibroblasts, which are known to form robust 

invadopodia structures and are susceptible to killing by rwt and rM51R-M viruses. We 

found that both viruses were effective at inhibiting the ability of these cells to form 

invadopodia structures. The decrease in invadopodia correlated with a decrease in the 

ability of cells to degrade the ECM. Furthermore, we found that the invadopodia protein 

marker Tks5 expression was significantly decreased after rwt virus infection, even as the 

expression of cortactin was drastically increased. These data indicate that oncolytic VSV 

can not only selectively lyse tumor cells, but may act to also inhibit the ability of tumor 

cells to metastasize.  
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2. Materials and methods 

2.1 Cell lines and virus 

Src transformed NIH 3T3 murine fibroblasts, also called 527s, were propagated in 

DMEM containing 10% Fetal Bovine Serum (FBS). LNPT prostate cancer cells were 

acquired by Dr. Darren Seals (Appalachian State University) and were grown in RPMI 

1640 containing 10% FBS. SNB19 glioblastoma cells were grown in DMEM containing 

10% FBS. Hela cells were grown in DMEM containing 10% FBS. rwt and rM1R-M 

viruses were a generous gift from Dr. Douglas Lyles at Wake Forest University School 

of Medicine (Winston Salem, NC) and have previously been described (Whitlow et al., 

2006). Virus stocks were prepared in Baby Hamster Kidney (BHK) cells as described 

(Kopecky et al., 2001).  

2.2 Measurement of cell viability 

  527 and LNPT cells were plated onto 96-well dishes and allowed to adhere for 3-5 

hours. Cells were then challenged with rwt and rM51R-M viruses at multiplicity of 

infections (MOIs) of 0.1 and 10 pfu/cell (plaque forming units/cell) for 6, 14, and 24 

hours. The high MOI (10 pfu/cell) was used to measure the cytopathic effects of VSV in 

a synchronous infection while the lower MOI (0.1 pfu/cell) allowed for the measurement 

of the effects of virus spread in culture. At 6, 14, and 24 hours post infection, cell 

viability was measured by an MTT assay (Cell Proliferation Kit 1; Roche Diagnostics, 

Indianapolis, IN). Cells that were not challenged with VSV served as controls in this 

assay. Experiments were run in triplicate and performed 3-5 times. 
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2.3 Wound Healing Assay 

   Src NIH 3T3 fibroblast cells were seeded into a 60mm tissue culture dish and were 

allowed to grow to 90% confluency in DMEM medium supplemented with 10% FBS. A 

scratch was made in the monolayer of cells with a 1-100ul pipette tip and the plate was 

washed twice with cell medium to remove cell debris. 5.0 mL of medium was gently re-

added into the scratched plates and cells were infected with either rwt or rM51R-M virus 

at MOIs of 0.1, 1.0 and 10 pfu/cell. Cells were incubated for 24 hours and the migration 

progress was monitored every four hours via microscopy using AxioVision 4.8 camera 

software. Images were analyzed with Adobe Photoshop using the Ruler Tool to measure 

the width of the scratch at three locations per time point. Data was normalized as a 

percentage of the original width of the scratch at 0 hours. 

2.4 ECM degradation assay 

ECM degradation assays were performed as previously described (Martin et al., 2012). 

Details are provided below: 

a) Production of Oregon Green 488-gelatin coated coverslips.  

Glass coverslips (13mm), in a 12-well dish, were cleaned in 20% nitric acid and 

washed with PBS. Coverslips were coated with poly-L-lysine, placed in 0.5% 

glutaraldehyde and washed again with PBS. Oregon green 488-conjugated gelatin was 

reconstituted according to the manufacturer’s protocol (Molecular Probes G-13187) and 

diluted into eight parts unlabeled gelatin 100µL of gelatin mixture (at 40oC) was pipetted 

onto each coverslip and sodium borohydride (NaBH4) was added to each well to reduce 
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and inactivate residual glutaraldehyde. After washing with sterile PBS, coverslips were 

equilibrated at least 24 hours in complete media appropriate to the cell type to be assayed. 

b) Plating and processing of cells on Oregon green 488 –gelatin coated coverslips to 

assay ECM degradation 

Cells were seeded onto a coverslip within each well at 70% confluence. The cells 

were given 3-5 hours for full adherence. The cells were then challenged with rwt and 

rM51R-M VSV at MOIs of 0.1 and 10 pfu/cell for 6 and 14 hours. This assay was run in 

duplicate and performed 3-4 times. Post infection, each well was aspirated and washed 

with PBS. To fix the cells, 0.4% paraformaldehyde was added to each well for 15 

minutes at room temperature. The wells were washed with PBS, followed by 

permeabilization by adding 0.4% Triton-X for 4 minutes at room temperature. The wells 

were washed in PBS to remove all Triton-X. A piece of parafilm was labeled and put 

into a moist chamber. A 5.0% donkey serum and 0.5% Alexa flour conjugated phalloidin 

in PBS was made and was dropped onto the parafilm for each coverslip. Forceps were 

used to lift coverslips and inverted onto the drops for 30-45 minutes in the dark at room 

temperature. Forceps were used to return coverslips to the 12-well dish, followed by 

washing with PBS. Coverslips were then mounted onto glass microscope slides using 

small aliquots of Prolong Gold DAPI. The coverslips were then stored in the dark 

overnight. 
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c) Quantification of fluorescent gelatin degradation by measuring normalized matrix 

degradation 

Each coverslip was observed using fluorescent microscopy. 10 random images were 

taken for each coverslip. Images were opened using ImageJ 

(http://www.macbiophotonics.ca/imagej/). Scale and measurements were selected by 

choosing “Analyze, Set measurements.” Using the fluorescent gelatin image, total area 

of degradation was calculated. The threshold of the image was set (Image, Adjust, and 

Threshold) to the upper and lower intensity values to select the areas of degradation. In 

some cases the gelatin was not completely flat when images were acquired.  Corrections 

for uneven background illumination across the gelatin were accomplished by subtracting 

the background (Process, Subtract background) or by filtering with a bandpass filter 

(Process, FFT, Bandpass filter). The total area degraded was measured by particle 

analysis (Analyze, Analyze particles). In the Analyze particles window, particle size >0 

was chosen to remove noise from the selection. “Display results” and “Summarize” were 

checked to show measurements. The “Total area” measurement was copied onto a 

spreadsheet.  
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2.5 Invadopodia/Rosette Morphology Assay 

  Glass coverslips were processed as previously described in section 2.3.1; however, 

the coverslips were not coated with gelatin. Cells were seeded onto coverslips and 

infected with VSV and processed as described in section 2.3.2. Ten random images were 

taken of each coverslip using fluorescent microscopy. Image sequences were imported 

(File, Import, Image sequence) for each set of coverslip treatments into ImageJ 

(http://www.macbiophotonics.ca/imagej/). The nuclei were counted via cell counter 

(Plugins, Analyze, Cell counter). Single, actin based punctate invadopodia and complete 

circular rosette structures were manually counted for each individual image and data 

show the number or invadopodia or rosette structures per cell, normalized to mock. This 

assay was run in duplicate and performed 3-6 times. 

2.6 Western blot analysis 

  527 and LNPT cells were grown to approximately 75% confluence in 6-well dishes 

and infected with rwt or rM51R-M VSV at MOIs of 0.1 and 10 pfu/cell for 6 and 14 

hours. As controls, cells were mock-infected. At 14 hours post-infection, cells were 

directly lysed in RIPA buffer containing aprotinin. Protein concentrations were 

determined using a Pierce BCA Protein Assay kit (Thermo Scientific). 20µg total protein 

for each sample was subjected to SDS-polyacrylamide gel electrophoresis on 10% 

polyacrylamide gels. The proteins were transferred onto a nitrocellulose membrane and 

blocked in tris-buffered saline (TBS) containing 0.1% Tween 20 (TBS-T, pH 7.6) and 

5.0% dry condensed milk. Immunoblots were probed with antibodies against Tks5, c-

Src, Cortactin, Dynamin 2, and β-actin (all from Cell Signaling Technologies) overnight 

http://www.macbiophotonics.ca/imagej/
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at 4oC in 5.0% BSA + 0.1%  TBS-T. β-actin was used as an internal standard. Blots were 

incubated with goat anti-rabbit horseradish peroxidase (HRP) linked secondary 

antibodies. Dura or Pico (Thermo Scientific) luminol and stable peroxide substrate were 

used to visualize the signal on GeneMate Bluelite Autorad film. ImageQuant TL v2005 

was used to quantify relative band intensities. Experiments were carried out 3-5 times. 

Data was normalized to levels of β-actin in each lane and expressed relative to mock 

samples. Statistical analyses were performed using Student’s t-test. 



 
 
 

31 
 

3. Results 

3.1 Src NIH 3T3 cells are susceptible to VSV infection 

In order to select a cancer cell line with high metastatic potential, various cancer cells 

lines were screened for their ability to form invadopodia structures and susceptibility to 

VSV infection. Src transformed NIH 3T3 murine fibroblasts have constitutively active 

Src expression and form prominent invadopodia structures.  LNPT prostate cancer cells 

which express Tks5 and SNB19 glioblastoma multiforme (GBM) cells are also innately 

invasive with demonstrated invadopodia competence. Cell viability was measured at 6, 

14, and 24 hours post infection with VSV at MOIs of 0.1 and 10 pfu/cell. For these 

studies, two different strains of VSV were tested. rwt virus is a recombinant wild-type 

strain of VSV, while rM51R-M virus is isogenic to rwt virus, but contains a methionine 

to arginine substitution at position 51 of the M protein sequence (Black et al., 1993). 

This mutation renders the virus defective at inhibiting host gene expression, including 

expression of genes in the host antiviral response (Ahmed et al., 2003). We and others 

have shown that M protein mutants, such as rM51R-M virus, are selective oncolytic 

agents due to their ability to target tumors in vivo with absence of disease (Ahmed et al., 

2004; Lun et al., 2006; Stojdl et al., 2003). Our results (Fig. 1) indicate that 527 cells 

were susceptible to infection with both rwt and rM51R-M viruses, especially at later 

times post-infection.  6 hours post-infection represents an early time point in the life 

cycle of VSV where cells are starting to produce progeny virions but virus-induced 

cytopathology is limited.  At this time point, a significant decrease in cell viability was 

observed in cells infected with rM51R-M virus at an MOI of 10 pfu/cell (approximately 
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20% as compared to mock-infected cells), but not with rwt virus.  By 24 h post-

infection, a later time in the life cycle of the virus, the viability of cells infected with rwt 

and rM51R-M viruses decreased to approximately 50%. No changes in cell viability 

were observed when cells were infected at an MOI of 0.1pfu/cell except at 24h post 

infection with r-M51R-M. These results indicate that both viral strains have the capacity 

to kill 527 cells in vitro when cells are infected with a high concentration of virus. 

However, these cells are relatively resistant to VSV-induced cell death at low MOIs, 

thus demonstrating the aggressive nature of these cancer cells.  

 

 

Fig.1. Src NIH 3T3 cells are susceptible to killing by VSV at a high MOI. Cells were 
infected with rwt and rM51R-M viruses at 6, 14, and 24 hours at MOIs of 0.1 and 10 
pfu/cell and subjected to an MTT assay to determine cell viability. Data was normalized 
as a percentage of mock cells (uninfected) and are shown as the means ± standard error 
for 3-5 experiments. Statistical analysis was carried out using unpaired Student’s t-test. 
A star represents statistical differences (P=<0.05) as compared to cells that were mock-
infected.  
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3.2 VSV infection inhibits the wound-healing ability of NIH 3T3 cells in vitro 

The ability of cancer cells to migrate is a key feature in the early metastatic cascade.  

While 527 cells are relatively susceptible to VSV infection, we sought to assess whether 

VSV infection could alter the ability of these invasive cells to migrate using a wound 

healing assay. Cells grown in 6 well dishes were scratched with a pipette tip and infected 

with rwt or rM51R-M virus at MOIs of 0.1, 1.0, and 10.0 pfu/cell. The width of the 

scratch was measured over time as an indication of the degree of migration of cells. Our 

results indicate that the gap closure in mock-infected cells was approximately 57% over 

the course of 24 hours (Fig. 2A, 2B). For rwt infection at MOI 0.1 and 10.0 pfu/cell, no 

significant decrease in cell migration was observed compared to mock-infected cells 

during the 24 hour time course (Fig. 2B). However, the migration of cells infected with 

rwt infection at an MOI 1.0 pfu/cell significantly decreased with under 30 percent of the 

wound being filled (Fig. 2B). For rM51R-M virus infection at MOI 0.1 and 1.0 pfu/cell, 

no significant decrease in cell migration was observed (Fig. 2C). However, rM51R-M 

virus inhibited cell migration almost completely at an MOI 10.0 pfu/cell (Fig. 2A, 2C). 

This could be due to the ability of rM51R-M to induce antiproliferative, antiviral 

responses in these cells, and/or promote apoptosis. These results indicate that VSV 

infection of invasive cancer cell lines impairs their ability to migrate in vitro, perhaps 

due to impairment of proliferation. Furthermore, data show a differential response in the 

migration capacity of cells infected with rwt versus rM51R-M viruses.  
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Fig.2. VSV inhibits the ability of cells to migrate. Src NIH 3T3 cells were grown to 90% 
confluency and scratched using a 1-100ul pipette tip (A). Cells were then infected with rwt 
(B) and rM51R-M (C) virus for 24 hours at MOI of 0.1, 1.0 and 10 pfu/ml. Cell migration 
was monitored every four hours following infection via microscopy and the wound width 
was measured. Data was normalized as a percentage of the width of the scratch at 0 hours 
and is shown as the mean of three experiments +/- standard error. Statistical analysis was 
performed using the Student’s t-test, a star represents statistical significance (P= <0.05) as 
compared to cells not infected.  
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3.3 VSV inhibits the ability of 527 cells to degrade gelatin matrix in vitro 

  In order for cancer cells to effectively metastasize, they must not only acquire the 

ability to migrate, but must degrade and remodel the ECM as well as the tough 

connective tissue of blood vessels for intravasation and extravasation. It has been shown 

in previous studies that Src NIH 3T3 cells form robust invadopodia structures and 

readily degrade gelatin matrix (Seals et al., 2005). To determine if the ability of VSV to 

inhibit 527 cell migration was correlated with 527 cell ECM degradative potential, cells 

were seeded onto gelatin-coated coverslips and infected with VSV to access overall 

degradation (Fig. 3). Our results show that infection of cells with rwt virus decreased 

their capacity to degrade the gelatin matrix. This was most apparent when cells were 

infected with virus for 14 hours at an MOI 0.1 pfu/cell (Fig. 3A, 3B).  We showed 

previously that at this time point, cells infected with rwt virus at an MOI of 0.1pfu/cell 

showed no significant change in cell viability. Therefore, these results suggest that the 

effects VSV infection on the ability of 527 cells to degrade the gelatin matrix are 

separable from its ability to induce apoptosis.   
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Fig. 3. Infection of cells with VSV decreases their ability to degrade extracellular matrix. 
Coverslips were mounted onto microscope slides and the total area degraded (pixels) 
was measured for each condition (A) using fluorescence microscopy.  527 cells on 
coverslips were infected with rwt (B) and rM51R-M (C)(n=2) virus for 6 and 14 hours at 
MOIs of 0.1 and 10 pfu/cell. Data was normalized as a percentage of mock cells and is 
shown as the means ± standard error for 3-5 experiments. Statistical analysis was carried 
out using unpaired Student’s t-test. A star represents statistical differences (p<0.05) as 
compared to cells that were not infected. 
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3.4 VSV inhibits invadopodia formation while increasing the number of rosette 

structures 

In recent years, actin-rich subcellular protrusions known as invadopodia have been 

shown to be critical for ECM degradation (Linder, 2007). Invadopodia consist of an 

actin-rich core surrounded by a number of important protein components, including 

cytoskeletal modulators, adhesion proteins, scaffolding proteins, and signaling 

molecules. Invasive cancer cells can also form invadopodia superstructures called 

rosettes. Rosettes have been studied most extensively in osteoclasts where they form 

specialized sealing zones to potentiate bone resorption (Destaing et al., 2003). However, 

in 527 cells, the mechanism of the organization of podosomes into such superstructures 

remains obscure and their role is not fully understood.  It is known that many viruses 

may alter the host cell’s cytoskeletal network in order to potentiate the viral replication 

cycle.  Given that invadopodia structures have rich actin cores, we hypothesized VSV 

infection would alter these structures due to 1: the ability of rwt virus ability to shut 

down host gene expression and 2: both invadopodia structures and VSV’s need for some 

of the same necessary proteins for successful formation and entry/exit respectively. 

Furthermore, results in Figure 3 show that degradation of the extracellular matrix is 

reduced in cells infected with VSV.  In order to investigate how VSV infection may alter 

the formation of these structures, 527 cells were seeded onto glass coverslips and 

infected with either rwt or rM51R-M virus for 6 or 14 hours at MOIs of 0.1 and 10 
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pfu/cell. The coverslips were then stained, processed and viewed using fluorescent 

microscopy (Fig. 4A.) to determine the number of individual invadopods as well as 

rosettes. Invadopods are visualized as punctate, actin rich structures, while the rosettes 

can be distinguished by the formation of circular superstructures. For rwt virus infection, 

no significant changes in structures were observed at 6 hours post infection at either 

MOI (Fig 4B, C). However, at 14 hours post infection, a significant decrease in 

invadopodia structures was observed (30% decrease compared to mock-infected). In 

contrast, there was no change in the number of rosette structures upon virus infection as 

compared to mock-treated cells. For rM51R-M infected cells, significant decreases in 

invadopodia structures were observed at 6 and 14 hours post infection at an MOI 10 

pfu/cell (Fig.4 D, E). Interestingly, an increased trend was observed in the number of 

rosette structures upon infection with rM51R-M virus. rM51R-M virus was slightly 

more effective than rwt virus at inhibiting the formation of invadopodia. These results 

show a promising correlation between viral-mediated inhibition of matrix degradation 

and number of invadopodia. These results also show that VSV infection inhibits the 

ability of cells to form invadopodia structures while maintaining and increasing the 

number of rosette structures. The decrease in invadopodia structures during viral 

infection may be due to altered expression of proteins known to be critical for 

invadopodia assembly and maturation. Importantly, the observed increase in rosette 

structures may be helpful in shedding light into the possible mechanisms by which VSV 

infection inhibits the invasiveness of 527 cells in vitro.  
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Fig. 4. Formation of invadopodia and rosette structures upon infection with VSV. Coverslips 
were mounted onto microscope slides and using fluorescent microscopy (A), the number 
of rosettes and invadopodia structures were counted.  527 cells grown on coverslips were 
infected with rwt (B, C) or rM51R-M (D, E) virus for 6 and 14 hours at MOIs of 0.1 and 
10 pfu/cell. Data was normalized as a percentage of mock cells and is shown as the 
means ± standard error for 3-5 experiments. Statistical analysis was carried out using 
unpaired Student’s t-test.  A star represents statistical differences (p<0.05) as compared 
to mock-infected cells. 
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3.5 VSV infection causes decreased Tks5 expression while increasing Cortactin 

expression 

The role of Tks5 in invadopodia was originally discovered using a Src substrate 

screening assay and further characterized based on its location in invadopodia in Src 

transformed fibroblasts (Seals et al., 2005). It has been shown that Tks5 is required for 

both invadopodia formation and invasion in many different cancer cell lines, as Tks5 

knockdown showed reduced matrix degradation and invasion (Eckert et al., 2011). 

Cortactin is a cytoskeletal protein that when phosphorylated can activate the Arp 2/3 

complex to promote invadopodia formation. Since cortactin regulates many actin-based 

cellular processes, including invadopodia formation and dynamics, its role in tumor cell 

invasion and metastasis is well documented. For example, it has been shown that 

overexpression of cortactin in NIH 3T3 cells increased invasion (Patel et al., 1998).  

Therefore, we wanted to investigate whether the decrease in invadopodia structures upon 

infection with VSV correlated with a decrease in the expression levels of Tks5 and 

cortactin in 527 cells. In order to assess the level of Tks5 and cortactin, 527 cells were 

seeded into 6-well dishes and infected with rwt virus for 6 and 14 hours at MOIs of 0.1 

and 10.0 pfu/cell. The expression of Tks5 and cortactin was analyzed via western blot 

analysis. The data in Figure 5A show a significant decrease in Tks5 expression when 

cells were infected with rwt virus for 14 hours at an MOI of 10.0 pfu/cell as compared to 

mock infected cells. In contrast, a robust increase in cortactin expression was found 

under the same conditions. The decrease in Tks5 expression correlates with the decrease 

in invadopodia structures as shown in Figure 4. However, the robust increase in cortactin 

may be facilitating the production of rosette structures in infected cells. These results 
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indicate that the expression of proteins necessary for invadopodia form and function are 

altered during the course of viral infection and may relate to a decrease in overall 

function.  

 

 

 

 

 

 Fig.5. Differential expression of Tks5 and cortactin in response to rwt virus.  Cells were 
infected with rwt virus for 6 and 14 hours at MOIs of 0.1 and 10 pfu/cell. Lysates were 
collected at 14 hours post infection and subjected to Western Blot analysis with antibodies to 
Tks5 (A) and Cortactin (B). Representative images from bands subjected to development on 
photographic film. Levels of Tks5 and Cortactin were normalized to levels of β-actin in each 
lane and expressed relative to mock samples. Data represent the mean ± standard error for 2-
3 experiments. Statistical analysis were conducted using the Student’s T test. A star 
represents statistical differences in protein levels as compared to the mock infected group. 
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4. Discussion 

 

Metastatic cancers are responsible for nearly 90% of all cancer related deaths. 

Although there are several cancer treatment options in practice, these are often outdated, 

non-targeted treatments that typically are non-effective and are correlated with highly 

adverse side effects. Not only do common cancer treatments provide little efficacy, they 

are also not tailored towards late stage metastatic cancer. Therefore, the development of 

oncolytic VSV, with specific anti-metastatic mechanisms could facilitate safer and more 

effective treatment options for those with late stage metastatic cancers. 

In this study, we determined whether VSV could alter several steps in the metastatic 

process, including the formation of invadopodia structures and corresponding matrix 

degradation, and expression of several proteins known to be required for invasion. The 

data presented here indicate that VSV strains can effectively inhibit the metastatic 

potential of highly invasive cancer cells in vitro. We found that upon viral infection, the 

number of invadopodia structures per cell were significantly reduced (Fig. 4). Although 

it is possible some viral-induced cell death could contribute to the observed decrease in 

invadopodia, our cell viability results (Fig. 1) indicate that at 14 hours post infection, 

minimal cell death has occurred, suggesting that the observed effect is mediated by more 

direct viral control of invadopodia structures. Although no previous studies have been 

carried out concerning the effects of VSV infection on cancer cell invadopodia 

formation, it is known that different viruses, including human immunodeficiency virus 

(HIV), hepatitis B virus (HBV) and human papilloma virus (HPV), manipulate the host 

cells’ cytoskeletal network in order to potentiate viral infection (Chen et al., 2002). 
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Indeed, the cytoskeletal network is critical for intracellular transport, including the 

transport of viral components. More specifically, many of these viruses target the RHO 

family of small GTPases in order for subversion of actin based structures to better 

potentiate viral infection. Tan et al. (2008) showed that that HBV-replicating HepG2 

cells exhibited morphological changes and had the appearance of membrane rufflings 

and lamellipodia-like structures, similar to the observed, ring-like structures in our study 

(Fig. 3). Further research into VSV interaction with RHO family GTPases will help 

determine if these are similar phenomena.  

The mechanisms by which VSV affects host cytoskeletal network is limited to the 

understanding of viral entry (Lara-Pezzi et al., 2001). Studies have shown that VSV 

virions enter cells via clathrin-coated pit-mediated endocytosis which is enhanced by the 

formation of actin filaments due to VSV’s elongated structure (Cureton et al., 2009). 

VSV engages in a “viral surfing” phenomenon, where proteins located on the virion 

surface bind with high specificity and affinity to cellular receptors that are associated 

with actin filaments just beneath the cell surface. The virion movement (surfing) towards 

entry sites is mediated by internal myosin motors, which are located in the cortical actin 

or at the base of filopodia and which contract the actin filaments. In effect, the 

movement of the actin cytoskeleton drags the cellular receptor–virion complexes to sites 

of high endocytic activity. It could be possible that VSV enters the host cells at areas of 

high actin turnover, such as the observed actin rich, rosette-like structures (Medeiros et 

al., 2006) 
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Our results indicate that while the number of invadopodia structures decreased, the 

number of rosette like structures increased upon infection of cells with VSV.  It has 

previously been shown that the rosette-like structures on Src- NIH 3T3 cells correlate 

with matrix degradation (Seals et al., 2005). Interestingly, the rosette-like structures we 

observed in our study (Fig. 3) did not contribute to matrix degradation during virus 

infection (data not shown). Therefore, it is possible that following virus infection, these 

rosette structures function in a manner similar to that observed by circular dorsal ruffles 

(CDRs). CDRs are dynamic, yet transient actin protrusions on the apical surface of cells 

that serve critical functions in receptor internalization and cell migration (Hoon et al., 

2012).  Recent studies have revealed that viruses can induce the formation of CDRs for 

their entry processes (Hetzenecker et al., 2016). For example, HCMV induced CDRs for 

micropinocytosis-mediated viral entry.  Although it is agreed on that VSV enters cells 

via clathrin mediated endocytosis, there is debate as to whether VSV may enter using 

multiple mechanisms, depending on cell type. Alternatively, it is possible that the ability 

of VSV to induce CDRs is independent of its viral entry mechanisms. Ultimately, while 

we have observed decreased numbers of invadopodia and increased numbers of rosette 

like structures, the mechanisms are unknown. We may assume that the decrease in actin 

rich invadopodia structures is associated with an increase in actin rich rosettes–like 

structures, but the function of these rosette-like structures upon VSV infection has yet to 

be elucidated.  

Cortactin, a cytoplasmic regulator of several cortical actin structures, has been shown 

to mediate invadopodia and CDR formation by forming a complex with large endocytic 

GTPase dynamin 2 (Dyn2). Krueger et al. (2003) showed that many viruses interact with 
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RHO family of small GTPases, which are also key regulators of CDRs (Ladwein and 

Rottner, 2008).  Interestingly, Tks5 is required to form invadopodia structures associated 

with invasive cells but is not required for the formation of CDRs (Seals et al., 2005). We 

observed an increase in cortactin levels upon infection with VSV and a corresponding 

decrease in Tks5 expression.  Therefore, these data further indicate that VSV may be 

enhancing the expression of factors responsible for the formation of CDRs and 

decreasing invadopodia forming factors in 527 cells. The ultimate effect may be the 

recruitment of actin for the formation of alternate structures such as CDRs and the 

reduced capacity of cells to form invadopodia, subsequently reducing the cell’s ability to 

degrade the extracellular matrix (Fig. 5). 

In this study, we observed that both rwt and rM51R-M viruses significantly inhibited 

the ability of cells to migrate into a wound by 24 hours post infection (Fig. 2). For rwt 

virus infection, the decrease in wound closure can likely be attributed to viral-mediated 

cell death, since wt strains of VSV are effective inducers of apoptotic mechanisms. This 

was also the case in our 527 cell viability experiments, as we observed that by 24 hours 

post infection with rwt virus, approximately 40% of cells were killed (Fig. 1). 

Interestingly, rM51R-M virus was more effective than rwt virus at preventing wound 

healing. This is most likely due to the antiproliferative effects induced by rM51R-M 

virus due to stimulation of the type I IFN (IFN α/β) response by this virus (Stout et al., 

1993). In support of this hypothesis, previous studies have shown that wound edge 

reunion was significantly inhibited by IFN α/β. Therefore, type I IFN inducing pathways 

lead to an enhancement of the antiviral response while inducing expression of factors 

that inhibit cell growth and proliferation. We also observed a greater decrease in 
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viability when cells were infected with rM51R-M virus as compared to rwt virus. The 

combination of antiproliferative responses and induction of cell death mechanisms by 

rM51R-M virus may account for the greater ability of this virus to prevent wound 

closure as compared to rwt virus. Furthermore, the differences in migration do not 

significantly differ before 24 hours post infection. This represents a late point in the 

virus life cycle and is associated with the induction of cell death mechanisms. Therefore, 

this suggests that the further inhibition of wound closure at 24 hours was in fact due to 

the enhancement of viral-mediated cell death. 

A promising observation we found was that VSV infection significantly decreased 

overall cancer cell-mediated matrix degradation (Fig. 3). Interestingly, we found that 

both rwt and rM51R-M viruses decreased overall degradation of the matrix which 

correlates with the reduction in invadopodia structures. Since both strains of the virus 

decreased the cell’s ability to degrade matrix, the effects of VSV on inhibition of matrix 

degradation were independent of their ability to inhibit host gene expression and mediate 

antiviral responses. The decrease in degradation was also not due to virus-induced 

cytopathology as our cell viability data show that at 14 hours post infection at MOI 0.1, 

no significant cell death was present. It is known that matrix metalloproteinases (MMPs) 

are responsible for ECM degradation and remodeling (Saarialho-Kere et al., 1992). 

MMP activity has also been shown to localize to CDRs, so unfortunately while the 

decrease in overall degradation is promising from a therapeutic point of view, this result 

does not shed light on how VSV may be modulating rosette-like structures.  Although 

very limited work has been done to address viral effects on cancer cell-mediated matrix 

degradation, some studies have shown that MMP levels from human macrophages are 
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dramatically reduced when infected with human cytomegalovirus (HCMV) (Strååt et al. 

2009). The mechanism/s by which the virus inhibits these enzymes remains unclear, 

although it may be postulated that MMP vesicle recycling may be interrupted or be 

utilized by viruses to transport viral proteins within the cytoplasm.  In support of this 

notion, we did not observe complete inhibition of degradation, suggesting that some 

MMP activity was still present. Strååt et al. (2009) demonstrated that MMP levels were 

affected by immediate-early or early viral gene products, but not at later stages of 

infection. This may suggest that MMP-mediated degradation was inhibited at the early 

stages of VSV infection, but recovered function later in the viral life cycle.  Furthermore, 

this may explain why we observed similar levels of degradation at different time points 

post infection.  

We have shown that VSV infection not only kills invasive cancer cells (Fig. 1), but 

also alters the ability of 527 cells to migrate and form invadopodia structures (Fig. 2,4), 

leading to an overall decrease in cancer cell mediated matrix degradation in vitro (Fig. 

3). VSV may represent a safer, more targeted treatment option for late stage cancers as 

compared to radiation, surgery, and chemotherapies. This opens the possibility of VSV 

being used to not only locally lyse tumor cells, but also to inhibit the ability of tumor 

.cells to form invasive structures, thus decreasing the metastatic potential of the cancer. 

Ongoing research needs to be done regarding the mechanisms by which VSV inhibits the 

formation of invadopodia and subsequent degradation. The mechanisms by which VSV 

induces increased rosette-like structures and how VSV benefits from their induction may 

be critical in understanding how this virus manipulates the host cell cytoskeletal 

network, and how to better tailor VSV as an oncolytic agent. 
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Chapter 3 

 

        Summary and Future Experiments 

We demonstrated within this project that upon infection with VSV, 527 cells showed 

a decrease in invadopodia structures per cell, which correlated with both a decrease in 

Tks5 and a c decrease in matrix degradation.  In addition, we found that following 

infection with VSV, 527 cells showed an increase in the number of rosettes per cell, 

which correlated with a increase in cortactin expression, but did not correlate with 

matrix degradation. We are left with the underlying questions, how is the virus impeding 

the function of invadopodia structures, and why? Furthermore, what aspect of the viral 

infection leads to the increase in rosette structures, and what is their function? These are 

the questions that need further research to elucidate. 

The decrease in degradation can be attributed to invadopodia loss of form/structure, 

and may be associated with the decrease in Tks5. So without Tks5, there are fewer 

invadopodia, which in turn means less MMP activity to degrade matrix. Further research 

needs to be done looking at the levels of necessary MMP levels post infection in order to 

confidently say that the decrease in matrix degradation was indeed attributed to MMP 

inhibition.    

In terms of the rosette structures we observed post infection, it is known that Tks5 is 

always localized and required in, and for the production of, invadopodia structures. In 

similar structures, like CDRs and other membrane rufflings, Tks5 is not required. 

Localization experiments need to be done with Tks5 in order to see if upon infection 
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with VSV and, if Tks5 is localized to those rosette structures. If Tks5 remained localized 

to the rosette structures, we can assume that they didn’t lose their fundamental makeup, 

but that the viral infection in some manner inhibited MMP activity. However, if Tks5 

was not localized to the rosette structures, we could assume the virus affected Tks5, or 

some upstream activators of Tks5. This would also suggest that the rosette structures 

seen post infection were more membrane ruffle-like, rather than invadopodia-like. Both 

of these are promising results, as they suggest a viral-mediated decrease in metastatic 

potential. However, to further investigate the ability of VSV to inhibit metastatic 

potential, Boyden chamber invasion assays need to be performed. This assay consists of 

two chambers separated by a filter coated with different extracellular matrix 

components. The cell suspension is placed in the top chamber and incubated in the 

presence of test media containing specific chemoattractants in the bottom chamber. Cells 

migrate from the top chamber through the coated filter pores to the bottom of the filter. 

This would assess how VSV affects the cells’ ability to chemotactically invade through a 

matrix. If inhibition was observed after infection, we may then state that VSV inhibits 

overall matrix degradation, migration, and collectively, invasion.  

Excitingly, the questions we investigated within this project have not, as of yet, been 

explored until now. A drawback to investigating a new area is the lack of published 

research with which to support and direct our own experiments. Therefore, the 

mechanisms by which VSV infection impacts cancer cells metastatic processes, 

specifically the formation of invadopodia structures and downstream effects are 

unknown. Invadopodia assembly and maturation, as well as disassembly, is an extremely 

complex and dynamic system, involving many signaling pathways with countless critical 
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proteins. In that regard, we did investigate the levels of some known critical proteins 

following infection with VSV. As we have stated previously, Tks5 is necessary for the 

development of invadopodia structures. We found that at 14 hours post infection with 

rwt at an MOI 10.0 pfu/cell, the expression of Tks5 was significantly decreased. It is 

possible that the ability of rwt virus to shut down host gene expression is the reason for 

the decrease. To better understand what the mechanism of inhibition may be, the levels 

of Tks5 need to be assessed after infection with rM51R-M virus. If we then observed 

similar decreases in expression, we could assume the decrease is not attributed to the 

ability of rwt virus to shut down host gene expression. Furthermore, we could then 

address whether VSV was blocking Tks5 phosphorylation by Src, or in some way 

sequestering Tks5 away from the invadopodia structures, perhaps through interruption of 

vesicle trafficking.  

We are also interested in assessing levels of cortactin upon infection of cells with 

VSV. Cortactin is a critical player in the development of not only invadosomal 

structures, but any structure requiring actin, as cortactin functions alongside the actin 

nucleating Actin-Related Proteins Arp2/3 complex, facilitating and stabilizing nucleation 

sites for actin branching. Interestingly, we observed a robust increase in cortactin 

expression 14 hour post infection with rwt virus at an MOI 10. This result correlates 

with the increase in actin rich rosette structures we observe following infection. 

However, how rwt infection promotes cortactin expression is unclear. Further 

experiments need to address the changes in levels of cortactin in cells infected with 

rM51R-M virus in order to elucidate whether these effects are attributed to the ability of 

rwt virus to shut down host gene expression. If we observe no differences in cortactin 
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expression, we may assume that rwt virus is inhibiting regulators of cortactin, such as 

tyrosine and serine/threonine kinases. Interestingly, it has been shown that VSV P 

protein requires phosphorylation by cellular casein kinase 2 (CKII) for transcriptional 

activity (Barik and Banerjee, 1992). It could be possible that CKII mediated viral 

transcription decreases the function of CKII in regulating the phosphorylation of 

cortactin.   

It is known that cortactin is required for VSV entry into the cell, as actin machinery is 

needed for viral clathrin-mediated endocytosis. Cureton et al. (2009) showed that VSV 

depends on actin machinery for complete internalization. Additionally, they found that 

during growth of virus-containing pits, the levels of actin, Arp3, and cortactin increased 

steadily (Cureton et al., 2009). This activity may be correlated with the observed 

increase in cortactin expression, however, this seems unlikely as we observed the 

increased cortactin expression and rosettes during later stages of infection.  

It may be possible to accentuate the effects of VSV on cancer cells. It has been shown 

previously that curcumin, a natural and principal curcuminoid in turmeric, actually 

promotes the oncolytic capacity of VSV for the treatment of prostate cancers by 

inhibiting STAT1, an essential regulator of the antiviral response pathway (Fehl and 

Ahmed, 2016). Other natural compounds, such as Moringa olifera and bromelain from 

pineapples, are currently being investigated in combination with VSV to assess possible 

synergistic effects. Although we found that VSV infection caused an overall decrease in 

matrix degradation, MMP activity remained prevalent. Therefore it is important to 

address possible combination therapies which may reduce MMP enzymes, or accentuate 
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the ability of VSV to inhibit them. The latter, unfortunately, would prove difficult until 

the mechanisms by which VSV inhibits matrix degradation are elucidated. It would be of 

great value to test natural derived compounds, such as curcumin, Moringa olifera, and 

bromelain with VSV to see if they enhanced the ability of VSV to inhibit matrix 

degradation and invadopodia formation. Another promising combination treatment could 

involve inserting in a rapamycin gene into the genome of rM51R-M. Rapamycin is a 

macrolide from the bacteria Streptomyces hygroscopicus (Sehgal et al., 1983). 

Rapamycin blocks transcriptional activation of cytokines, effectively inhibiting them. 

rM51R-M lacks the ability to shut down host gene expression, so expressing rapamycin 

may enable selective tumor lysis without the risk of host infection. Due to cost and time, 

a co-infection with both rM51R-M and S. hygroscopicus may also be effective. 

Project Limitations 

This project would greatly benefit from future in vivo studies, investigating whether 

VSV infection has the ability to inhibit metastasis in mouse models of cancer. Although 

we obtained promising results from in vitro experiments, there are many factors left 

unaccounted for without any in vivo results, such as dose, immune response, and 

toxicity. In vivo work needs to be done in order to progress VSV as an oncolytic agent to 

more clinical based application. Results from Ahmed et al. (2004) demonstrated that 

VSV infection decreased tumor overall volume in mice, however; VSV infection on the 

tumor metastatic potential has yet to be investigated. Unfortunately, an enduring 

problem in cancer research is the failure to reproduce encouraging preclinical therapeutic 

findings using transplanted or spontaneous primary tumors in mice in clinical trials of 
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patients with advanced metastatic disease (Kubota et al., 1994; Morikawa, 1998).   

Orthotopic transplantation of tumors actually enhances the possibility of distant 

metastatic spread, compared with ectopic transplants, and advanced multiple metastases 

can be obtained (Barnett and Eccles, 1984; Dawson et al., 2009), especially if the 

primary tumors are surgically resected. (Munoz et al., 2006). This prolongs survival and 

allows sufficient time for disseminated cells from the primary tumor to develop into 

established metastases, thus recreating the multiple sequential steps that are associated 

with the metastatic cascade (Barnett and Eccles, 1984; Munoz et al., 2006).  So, we 

could orthotopically transplant human primary breast cancer cells into severe combined 

immunodeficient (SCID) mice, and allow tumor growth and establishment for ~3 weeks. 

The tumor could then be surgically resected to prevent the rapidly growing primary 

tumor from causing end point termination of the experiment. Several months later, after 

the mice show signs of lung metastasis, those cells could be collected and cultured. In 

theory, this enrichment process would allow for a reliable, breast to lung metastasis. The 

enriched cells would then be transplanted into new hosts and tagged with a marker such 

as luciferase 41. After allowing the tumor to establish, various treatments of both rwt 

and rM51R-M virus would be injected intratumorally. At varying times post infection, 

the location of cells could be monitored via in vivo bioluminescence imaging. This 

would indicate whether VSV infection inhibited the ability of those cells to metastasize 

to the lungs. 

Importantly, the experiments we performed need to be replicated using rM51R-M 

virus. This virus represents a safer oncolytic treatment option due to its lack of 

pathogenicity in vivo (Ahmed et al., 2004). The implications of using this attenuated 
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virus are great, as it can be used to not only target and lyse tumor cells selectively, but 

recruit immune cells to the tumor site due to the virus inability to shutdown host antiviral 

factors. rM51R-M virus allows the expression of genes involved in antiviral responses, 

such as the type I interferon (IFN) gene. Ahmed et al. (2006) demonstrated that, in 

contrast to the rwt virus, rM51R-M virus induced the maturation of myeloid dendritic 

cell (mDC) populations, as indicated by an increase in the surface expression of CD40, 

CD80, and CD86 as well as the secretion of interleukin-12 (IL-12), IL-6, and type I IFN. 

In addition, mDC infected with rM51R-M virus effectively activated naïve T cells in 

vitro, whereas rwt virus-infected mDC were defective in antigen presentation. The study 

by Ahmed et al. (2006) indicated that rM51R-M virus effectively stimulates the 

maturation of mDC and has the potential to promote effective T-cell responses to vector-

expressed antigens, activate DC at tumor sites during therapy, and aid in tumor 

immunosurveillance and destruction. Future treatments using rM51R-M are promising, 

as the virus is not only effective at tumor oncolysis and inhibition of metastatic 

processes, but also in the activation and maturation of immune cells to assist in tumor 

destruction. 

Additionally, an important limitation to the project was using only one cell line. This 

cell line (527) was used due to its constitutively active Src, which subsequently enhances 

the cells’ proliferation rate, survival, migration, degradation, invadopodia, and overall 

metastatic potential. This model cell line allowed us to better assess the effects of VSV 

infection on critical metastatic factors such as migration, matrix degradation, and 

invadopodia formation. Unfortunately, because we used only one cell line, we cannot 

confidently state that the effects we observed in 527 cells would also translate to other 
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types of cancers. For example, not all cancers have aberrant Src signaling. Presumably, 

the effects of VSV infection on the invasive structures of 527 cells would be similar in 

other cell types since invadopodia have actin rich cores, but without further research on 

other cell types, we cannot safely make that assertion.    

In conclusion, the results from this project have yielded important insights on the 

interactions between VSV and invasive cancer cells. We found that VSV infection 

significantly inhibits the ability of invasive cancer cells to form structures which are 

necessary for metastasis. Our studies have contributed to the field of oncolytic 

virotherapy by laying out a foundation for how VSV may inhibit the metastatic process. 

This study further demonstrates that there may be safer, more effective late stage cancer 

treatments than those currently being employed.    
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